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A model of the rectification column stage is proposed in which the possible splitting into two liquid
phases may occur. For this case, the equilibrium stage concept has hitherto been employed in the
literature. In this work it is shown that even in this situation, it is possible to use, under certain sim-
plifying assumptions, the up-to-date nonequilibrium stage concept. For solving the proposed model,
a global approach is suggested with retaining the problem dimension regardless of the number of
coexisting liquid phases.

For a long time, the traditional concept of equilibrium stage in its most different variants
has been used for simulating the rectification. To correct the differences in behaviour
between the real and equilibrium stage, the stage or vaporization efficiencies intro-
duced in different ways have been employed. Even though this model concept may be
adequate in many cases of binary mixtures, its disadvantages for multicomponent mix-
tures have been evident for a long time. Therefore, the nonequilibrium stage concept
(sometimes also denoted as rate-based approach), such as published by Krishnamurthy
and Taylor1, is more and more often applied in the most different regions of mathemati-
cal modelling of diffusion separation processes. Even though it is possible to find in the
literature differently modified approaches to the calculation of mass transfer rate
through the phase boundary2,3, it is possible to say that the principle remains the same.
The extension of this concept in the chemical-engineering practice is best documented
by the fact that the Aspen Technology, Inc., which concerns with the development of
chemical-engineering software, furnishes already from 1988 the modulus RATEFRAC
for calculating the tray and packed columns, stemming from the nonequilibrium stage
concept4 as one of the moduli of its simulation program ASPEN PLUS. The nonequili-
brium stage concept has already been utilized in simulating and modelling, besides the
common two-phase separation processes such as rectification and absorption in tray
and packed columns, even for special situations such as, e.g., rectification accompanied
by chemical reaction catalyzed with a dispersed solid catalyst in the liquid phase5 or
liquid extraction respecting the distribution in the dispersed phase6. Huang, Taylor and
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Kooijman7,8 have recently proposed the models originating from the nonequilibrium
stage concept of a so-called second generation for a series of accompanying effects,
such as the longitudinal backmixing, droplet entrainment, pressure drop, etc. Seader9

reports that the introduction of the nonequilibrium stage concept could be the beginning
of a new era in simulating and designing the separation processes.

Recently a number of works has appeared which deal with the computation of dy-
namic behaviour of stage rectification in the case when the splitting of the liquid phase
into two liquid phases may take place, e.g.10–12. The authors have altogether used the
Michelsen method13 for the identification of possible existence of the second liquid
phase. Eckert and Kubicek14 have published a generalized model of equilibrium stage
for the case when the liquid may split up to p liquid phases and exploited it successfully
even for the case of columns with a possible existence of two and three liquid phases15.
For the identification of the number of coexisting phases, they used their own
method16. All these works stem from the out-of-date equilibrium stage concept. Lao17

as the first proposed and verified several model concepts for the three-phase distillation
employing the rate based approach.

In this work, a simplified mathematical model is proposed of the rectification column
stage with a possible occurrence of two liquid phases which as well employs in its
formulation the rate based approach. The model is formulated for a stationary state but
its modification for dynamic behaviour should not make trouble.

THEORETICAL

Let us consider the j-th stage of rectification column illustrated schematically in Fig. 1.
For the sake of simplicity, no side feed and withdrawn streams are considered because
it would only complicate the model clarity but would not mean a new quality from the
point of view of formulation. Owing to the simplification, let us assume further besides
the stationary state:

1. The spaces filled up with the vapour and the continuous liquid phase, in which the
second liquid phase might be dispersed in the form of spherical drops, behave as ideal
mixers, i.e., the composition and temperature of corresponding leaving streams corres-
pond to those in these spaces. In case of the dispersed second liquid phase, this assump-
tion means that the drop distribution as well as their composition and temperature in
leaving liquid stream from the stage, consisting of the two liquid phases, correspond to
the situation on the stage as well.

2. The drop volumes in single drop-classes and the number of these classes are given
in advance (see Appendix).

3. All the drops of the k-th class of dispersed liquid leaving the stage have the same
composition. With regard to the coalescence and splitting of the drops of different
classes it is evident that, in fact, the composition of drops even of the same size should
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differ. However, the assumption considered allows us to retain an acceptable model
complexity.

4. Only the vapor or continuous liquid phase can exchange heat with surroundings.
5. The axial mixing along the column is considered in none of the phases which

would be caused, e.g., by droplet entrainment of the continuous and dispersed liquid
phase, by weeping, etc.

6. The mass transfer takes place only between the vapour and continuous liquid
phase and between the continuous and dispersed liquid phase. The mass transfer by
diffusion between the vapour and liquid phase as well as between drops of different
sizes does not take place with respect to the probable very short contact time and small
interfacial area between the vapor bubbles (or vapour above the level) and the drops of
dispersed liquid phase.

7. The leaving continuous and dispersed liquid phases have the same temperature.
For the same reason as in the foregoing point, we do not consider the heat exchange
between the vapour and dispersed liquid phase.

Under these assumptions we can write the component balances in the vapour phase

0 = Vj+1yi,j+1 − Vjyi,j − Ni,j
∗           i = 1, ..., I  . (1)

Vj                   Qj
C    Lj−1

C                Lj−1,1
D    Lj−1,K

D

Vapour Continuous 
phase Ni,j,1

o

Ni,j,k
o

Ni,j,K
o

Ni,j
∗

Qj
∗

Qj
V

Vj+1                        Lj
C                  Lj,1

D      Lj,K
D

Drop-class 1

Dispersed 
phase

Drop-class k

Drop-class K

FIG. 1
Nonequilibrium j-th stage of rectification column with possible occurrence of two liquid phases
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Analogously we write the component balances for the continuous liquid phase
 

0 = Lj−1
C xi,j−1

C  + Ni,j
∗  − Lj

Cxi,j
C − ∑Ni,j,k

o

k=1

K

          i = 1, ..., I (2)

and the component balances of the whole dispersed liquid phase
 

0 = ∑ 
k=1

K

Lj−1,k
D xi,j−1,k

D  + ∑ 
k=1

K

Ni,j,k
o  − ∑ 

k=1

K

Lj,k
D xi,j,k

D           i = 1, ..., I (3)

completed by the component balances of K – 1 classes of dispersed liquid phase
 

0 = Lj−1,k
D xi,j−1,k

D  + Ni,j,k
o  + (Gj,k − Lj,k

D ) xi,j,k
D      i = 1, ..., I, k = 1, ..., K − 1  . (4)

Term G represents a source of drops of the k-th class by splitting and coalescing from
drops of other classes. The way of its possible expressing will be shown in Appendix.
The given formulation of Eqs (3) and (4) ensures the fulfilment of condition

∑ 
k=1

K

Gj,k = 0 and simultaneously the assumed re-distribution of dispersed liquid phase

only to drops of permissible classes.
As next one we will write the enthalpy balances of the vapour phase

0 = Vj+1Hj+1 − VjHj − ∑ 
i=1

I

Ni,j
∗ Hi,j

V + Qj
V − hj

Vaj
∗  

εj
V(Tj

V − Tj
∗ )

exp (εj
V) − 1

(5)

and of both the liquid phases

0 = Lj−1
C Hj−1

C  + ∑ 
k=1

K

Lj−1
D Hj−1,k

D  + ∑ 
i=1

I

Ni,j
∗ Hi,j

C  + hj
Caj

∗ (Tj
∗  − Tj

C) − Lj
CHj

C − ∑ 
k=1

K

Lj,k
D Hj,k

D  + Qj
C  .   (6)

The expression εj
V/(exp(εj

V) – 1) in relation (5) serves for correcting the heat transfer
coefficient in the vapour phase to mass transfer. The way of its calculation will be
mentioned in Appendix. In case of heat transfer coefficient in the liquid phase, this
correction may be neglected2.

Now let us write down the equations for mass transfer which are, between two
phases, always only I – 1 independent. For the mass transfer from the vapour into the
continuous liquid phase, we can thus write
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0 = Ni,j
∗  − Ji,j

V,∗  − yi,j ∑ 
m=1

I

Nm,j
∗           i = 1, ..., I − 1 (7)

 

0 = Ni,j
∗  − Ji,j

C,∗  − xi,j
C ∑ 

m=1

I

Nm,j
∗           i = 1, ..., I − 1  . (8)

Analogously we can write for the mass transfer from the continuous liquid phase into
the dispersed liquid phase
 

0 = Ni,j,k
o  − Ji,j,k

C,o − xi,j
C  ∑ 

m=1

I

Nm,j,k
o           i = 1, ..., I − 1, k = 1, ..., K (9)

 

0 = Ni,j,k
o  − Ji,j,k

D,o − xi,j,k
D  ∑ 

m=1

I

Nm,j,k
o           i = 1, ..., I − 1, k = 1, ..., K  . (10)

The equation for heat transfer from the vapour into the continuous liquid phase will be
 

0 = hj
Vaj

V 
εj

V(Tj
V − Tj

∗ )
exp (εj

V) − 1
 + ∑ 

i=1

I

Ni,j
∗ Hi,j

V − hj
Caj

C(Tj
∗  − Tj

C) − ∑ 
i=1

I

Ni,j
∗ Hi,j

C  . (11)

On the assumption of thermodynamic equilibrium on phase boundaries, we can write
for the interface vapour–continuous liquid phase
 

0 = ψi,j
∗ xi,j

∗  − yi,j
∗           i = 1, ..., I  . (12)

Analogously for the interface continuous liquid phase–dispersed liquid phase we can
write

0 = γi,j,k
C,oxi,j,k

C,o − γi,j,k
D,oxi,j,k

D,o          i = 1, ..., I, k = 1, ..., K  . (13)

For single mole fractions, the constraints hold which follow from their definitions: In
vapour
 

0 = ∑ 
i=1

I

yi,j − 1 (14)
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 0 = ∑ 
i=1

I

yi,j
∗  − 1  , (15)

in the continuous liquid phase
 

0 = ∑ 
i=1

I

xi,j
C − 1 (16)

 

0 = ∑ 
i=1

I

xi,j
∗  − 1 (17)

0 = ∑xi,j,k
C,o

i=1

I

 − 1          k = 1, ..., K  , (18)

or in the dispersed liquid phase
 

0 = ∑ 
i=1

I

xi,j,k
D,o − 1   or   0 = Lj,k

D           k = 1, ..., K (19)

 

0 = ∑ 
i=1

I

xi,j,k
D  − 1          k = 1, ..., K  . (20)

DISCUSSION

If we assume that the pressure on the stage is known, and the amount, composition and
temperature of all the input streams into the stage as well as the size of heat fluxes are
given, it is possible to consider relations (1)–(20) as a system of equations

0 = F(X)  ,  (21)

where dim F = dim X = 5I + 4IK + K + 5 and the vector of unknowns X consists of
Vj, yi,j, Ni,j

∗ , Lj
C, xi,j

C, Lj,k
D , xi,j,k

D , Ni,j,k
o , Tj

V, Tj
∗ , Tj

C, yi,j
∗ , xi,j

∗ , xi,j,k
C,o, xi,j,k

D,o for i = 1,…, I and k = 1,…,

K at the variables which contain these subscripts. The reader will notice that in the
vector of unknowns, even the variables are considered which refer to all the classes of
dispersed liquid phase which, in fact, need not exist on each stage. This is typical of the
application of a so-called global approach to the solution when the total dimension of
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the problem is not changed and different phase situations are realized only by inter-
changing the relations as it has been made in our work16 and as we shall show below
for this case considered. To solve system of equations (21), it is possible to use, e.g.,
some of modifications of the Newton method. Very important is the initial guess of the
number of coexisting phases and the other initial values of variables connected with it.
From experience follows that it is suitable to assume the presence of the second liquid
phase16 when choosing the initial values, in the given case in all the drop-classes. The
alternative in relation (19) means the replacement of the first relation given there by the
relation which defines that the certain drop-class of dispersed phase does not exist.
Then for this class, the respective constraint of the sum of mole fractions on the respec-
tive interface need not be fulfilled. If, in the course of iteration process, the case occurs
that for hitherto non-existing smallest drop-class, the sum of its mole fractions begins

to approach unity, which can be tested, e.g., as ∑ 
i=1

I

xi,j,1
D,o > 0.99999, we insert the first

relation in Eq. (19) for k = 1 into the considered system of equations instead of the
up-to-now considered second relation. In this way we model the formation of dispersed
liquid phase in the form of smallest droplets. On the contrary, if the case occurs in the
course of iteration calculation, that the flow rate of hitherto existing k-th drop-class
turns non-positive, i.e., Lj,k

D  ≤  0, we exchange the up to now considered first relation in

Eq. (19) for the second (for the respective k). In this way we model the extinction of
drops of arbitrary drop-class. The smallest amount of dispersed liquid phase of k-th
class corresponds just to one drop of this class, which, however, is not a condition in
the given formulation. Need for this exchange is tested always after several (e.g., two)
iteration steps.

Let us mention that in the given model formulation it is assumed that always the
vapour and continuous liquid phase leave the tray, i.e., the case does not take place
when all the incoming liquid is evaporated or all the incoming vapour is condensed
owing to the supplied (taken away) heat. If the stage should function as flash, it would
be necessary, such as in Eq. (19), to exchange moreover the relations in Eqs (15) and
(17) for those defining the non-existence of the respective leaving phase.

Relations (1)–(13) contain a number of auxiliary functions whose enumeration will
be dealt with in Appendix for the sake of clear arrangement.

CONCLUSIONS

The development of modern methods of computing the separation equipments was en-
abled only by the considerable advancement of computer technique in the last thirty
years. With this advancement, it is possible to observe also the effort to give more
precision to the actual description of the process. Simultaneously, one passes over from
the decomposed approach to the global one. This logical development can be watched
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not only in the stationary but also in dynamic modelling where the standard software
for solving the differential-algebraic systems18 is used even for the solution of multi-
phase rectification12.

The methodology presented in this work, which can be naturally simply (by inserting
feeds, side withdrawals, etc.) transferred to the description of the entire rectification
column including boiler and condenser, outlines, in addition to the models proposed by
Lao17, another method how, even in the case of multiphase rectification, to employ the
modern rate based approach. The modification of this approach to the dynamic model
is of course possible as well.

Numerical verification of the proposed model forms the subject of next paper. Never-
theless it is to be expected that the agreement of calculated values with experimental
data should be at least as good as that achieved by Lao17 in his best model IV which
could be derived from the model presented here by introducing further simplifying
assumptions. But it is necessary to realize that the number of simultaneously solved
equations considerably increases unlike the common equilibrium concept. In case of
three components on considering five drop-classes of the dispersed second liquid phase,
it is in the proposed model 85 equations for each stage in comparison with 13 equations
for the equilibrium model. It is evident that the possibility of neglecting the concentra-
tion or temperature gradient between the bulk phase and interface in some phase, which
corresponds to the infinitely large mass or heat transfer coefficient in this phase, would
allow us to diminish the number of equations in the model and so also the simplifica-
tion and acceleration of the computation. The question whether the complex approach
proposed here is of any sense, is obvious especially if we consider a considerable un-
certainty in the estimation of a number of model parameters calculated from regression
relation obtained experimentally (see Appendix) which are themselves subject to a
great error. Such a question, however, always was, is and will be in the future important
not only in considerations of the advancement of this region of chemical engineering.

APPENDIX

Enumeration of Auxiliary Functions

A number of functions occur in Eqs (1)–(13) which must be enumerated in the course
of computation. The enumeration of molar and partial molar enthalpies H in the liquid
and vapour phase as well as the enumeration of distribution coefficients between the
continuous liquid and vapour phase ψ, activity coefficients in the liquid phase γ and
molar densities of all phases ρ are undoubtedly well-known to the reader and therefore
we will not treat them.

The important quantity in the presented model is the source term G in Eq. (4) which
represents the effect of splitting and coalescence of drops. One of the possibilities how
it can be formulated is, e.g., use of HD (homogeneous distribution of the sources)
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model by Jiricny et al.19. The discrete distribution of drops into drop-classes must be
postulated in advance:

Set of eligible drop sizes of dispersed phase (as far as it exists) contains drops of
minimum given volume v1

D and drops of maximum volume vK
D.

All drops of the set have volumes equal to multiples of volume of the smallest drop
 

vk
D = kv1

D          k = 1, ..., K  . (A1)

The source term for drops of k-th class can then be formulated as follows
 

Gj,k = [  ∑ 
l=1

M

(kl,k
c nj,lnj,k−l − kk,l

d nj,k) + ∑ 
l=k+1

K

(1 + δl−k,k) (kl,k
d nj,l − kk,l

c nj,knj,l−k)]  vS,jvk
Dρj,k

D   .   (A2)

Here we have omitted, for the sake of simplicity, the stage subscript at rate constants
for splitting kd and coalescence kc whose estimation will have a great significance for
the model reliability. For M in Eq. (A2) holds
 

M = 
k−[1−(−1)k/2]

2
  . (A3)

The first summation term in Eq. (A2) represents the coalescence of drops of k-th class
from smaller drops and simultaneously their splitting, the second term represents the
formation of drops of k-th class by splitting larger drops and reverse synthesis of larger
drops with drops of k-th class as one of participants of this synthesis. Similarity of these
relations with those from reaction kinetics is evident.

Number concentration of drops of k-th class on the stage can be, under the above-
mentioned assumption that the mixture of liquids leaves the stage in the same “mixed”
state as it occurs on it, expressed by the relation

nj,k = 
Lj,k

D

ρj,k
D vk

D(∑ 
m=1

K

Lj,m
D  / ρj,m

D  + Lj
C / ρj

C)

  .  (A4)

Now let us pay attention to Eqs (7)–(10). In literature one can find several ways of
their formulation and enumeration. In front of the summation terms, the arithmetic or
logarithmic average value of concentration between the bulk of the respective phase on
the stage and the concentration in the inlet stream of this phase coming on the plate3 is
sometimes used instead of the concentration in the bulk of the respective phase. Similar
approach is applied even for temperatures Tj

V and Tj
C in Eqs (5) and (6). However, the
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way of solution of Eqs (7)–(10) and the enumeration of transport terms following from
it appears to be more substantial. As it has been said, there exist several approaches3

from which the method by Krishna and Standard20 based on the exact solution of
Maxwell–Stefan equations and the method based on the linearization theory by Toor21

and Stewart and Prober22 are recommended most often. However, in none of these
approaches we dispense with the enumeration of binary mass transfer coefficients in the
respective phase whose values are decisive for the model reliability. For the case of
occurrence of the second liquid phase on the stage, there exist no verified methods of
their estimation in the literature. Lao17 used in his work the procedures originating from
theoretical concepts on the flow of phases on stage. On the assumption that the amount
of dispersed liquid phase is not large, it would be possible to employ a suitably modi-
fied AIChE method23 in the case of tray column and the mass transfer between the
vapour and continuous liquid phase. It provides the value of mass transfer coefficient
already multiplied by the interfacial area both for the continuous liquid phase and for
the vapour phase. A survey of recent methods which could be used for the given pur-
pose even for packed columns is reported by Taylor et al.8 For the mass transfer coeffi-
cient between the continuous and dispersed phase, it would similarly be possible to use
some of regression relations published for the extraction usually in the form of depend-
ence of the Sherwood number on the Reynolds and Schmidt numbers, see, e.g.24.

Inserting the drop population model makes it possible, on the assumption of spherical
shape of drops of dispersed liquid phase, to estimate the interfacial area between the
k-th drop-class of dispersed liquid phase and continuous liquid phase directly from the
relation
 

aj,k
o  = 4.836vS,jnj,k (vk

D)2/3  . (A5)

Parameter ε in Eq. (5) is defined20 as
 

εj
V = [  ∑ 

i=1

I

Ni,j
∗ Cpi

V] /hj
Vaj

∗   . (A6)

The estimation of heat transfer coefficient in the vapour and continuous liquid phase is
usually done on the basis of the Chilton–Colburn analogy25 from the average value of
mass transfer coefficient, Lewis number and the value of molar heat capacity in the
respective phase.

SYMBOLS

a interfacial area, m2

Cp molar heat capacity at constant pressure, J mol–1 K–1 
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F vector of equations
G source of drops, mol s–1 

H molar or partial molar enthalpy, J mol–1 

h heat transfer coefficient, W m–2 K–1 

I number of components
J transport term in Eqs (7)–(10), mol s–1 

K number of drop-classes
kc rate constant of coalescence, m3 s–1

kd rate constant of dispersion (drop splitting), s–1 

L liquid phase flow rate, mol s–1 

M summation limit
N mass transfer rate through phase boundary, mol s–1 

n number concentration of drops, m–3 

Q heat flux, W
T temperature, K
V vapour phase flow rate, mol s–1 

v volume, m3 

vS total hold-up on stage, m3 

X vector of unknowns
x mole fraction in liquid phase
y mole fraction in vapour phase
γ activity coefficient
δ Kronecker delta
ε parameter defined by Eq. (A6)
ψ continuous liquid phase–vapour distribution coefficient 
ρ molar density, mol m–3 

Subscripts
i component i
j stage j
K class of largest drops
k drop-class k
l, m auxiliary index

Superscripts
C continuous liquid phase
D dispersed liquid phase
V vapour phase
* value at vapour–continuous liquid phase interface
o value at continuous liquid phase–dispersed liquid phase interface

The work was carried out in the frame of project of Grant Agency of the Czech Republic No.
104/94/1109
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